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The development of biodegradable polymers derived
from renewable resources offers solutions to problems
associated with traditional commodity plastics ranging
from waste management to dwindling petrochemical
feedstocks. Important targets include polyesters derived
from the ring-opening polymerization of cyclic esters.
Polylactide (PLA) is a notable example with numerous
biomedical and pharmaceutical applications.1 A goal of

current research is to design new catalyst systems with
discrete ligand environments that are amenable to
systematic variation, thus enabling the rational control
of PLA molecular and physical properties.2 Simple
lanthanide compounds with multiple monodentate
ligands (e.g., alkoxides) have been found to be particu-
larly efficient catalysts for the synthesis of high-molec-
ular-weight PLA from lactide,3 but judicious control of
their reactivity has been difficult due to a lack of
knowledge of precatalyst structure and/or an inability
to systematically vary catalyst structure through ligand
design. We report the synthesis and full characterization
of novel yttrium complexes ligated to the multidentate
ligands S-H3LMe,4 R-H3LiPr,5 and H3LMe2,6 representa-
tives of a potentially larger class of similar ligands with
substituents of variable size and shape.7 Preliminary
studies show that these new, well-defined complexes
catalyze the polymerization of lactide and that struc-
tural differences influence the polymerization rate and
the polymer molecular weights.

The dinuclear complexes 1 and 2 were isolated as
colorless crystalline solids in 52 and 65% yields, re-
spectively, by treating the appropriate ligand with

Y[N(TMS)2]3 in toluene at ambient temperature fol-
lowed by crystallization.8,9 X-ray diffraction analyses
revealed similar dinuclear structures for the two com-
plexes.10 Each yttrium is ligated by three macrocyclic
nitrogen donors, two terminal η1-alkoxides, and two
bridging η2-alkoxides; each ligand contributes five do-
nors to one metal ion, with the sixth bridging. The
structures illustrate novel coordination modes for their
respective ligands. Thus, sterically hindered R-LiPr has
only been observed to form monomeric complexes with
a range of metals,5 and although dimeric complexes of
S-LMe with various transition metal ions are known,
they are of the general form [M(S-LMe‚S-H3LMe)M]n+

(e.g., M ) CoIII or CrIII, n ) 3) in which hydrogen bonds
join the dimeric halves comprising the ligand that is
deprotonated on one side and protonated on the other.11

The 1H NMR spectra of 1 and 2 in CD2Cl2 are sharp
and support retention of their dimeric, C2-symmetric
structures in solution.

Complexes 1 and 2 are active lactide polymerization
catalysts (Table 1). Modest polymerization rates at
relatively low [M]/[Y] ratios (M ) monomer; Y ) yttrium
center) were observed with complex 1, but the product
polymers were relatively monodisperse (entries 1 and
2).12 Increases in the [M]/[Y] ratio led to slower polym-
erizations and similar molecular weight distributions
(entries 3-5). However, we did not observe control of
the polymer molecular weight with changes in the
[M]/[Y] ratio.13

Complex 2 exhibited dramatically different behavior.
The polymerization rates were significantly faster at
identical [M]/[Y] ratios as compared to complex 1
(entries 2 and 7; entries 5 and 8). Molecular weights of
the polymers prepared using 2 were generally 2-3 times
greater than the polymers obtained using 1. Although

Table 1. Polymerization of D,L-Lactide in CH2Cl2 at
25 °Ca

entry no. [M]/[Y] time (h) yield (%) Mn (×103) Mw/Mn

1 1 50 2 62 19.8 1.30
2 1 150 2 31 17.0 1.26
3 1 150 24 64 18.4 1.31
4 1 150 48 88 20.9 1.31
5 1 450 24 62 8.6 1.25
6 2 50 2 100 35.9 2.20
7 2b 150 0.5 97 52.7 1.55
8 2 450 24 98 62.5 2.13
9 2b 1000 0.5 11 7.7 1.39

10 2b 1000 2 25 20.2 1.29
11 2b 1000 96 66 32.3 1.77
12 3 150 0.03 90 66.9 1.62
13 3 450 0.17 81 94.6 1.26
14 3b 1000 0.5 66 45.7 1.55
a For details on the polymerization procedure, see the support-

ing information. b Aliquots removed at the indicated time interval.
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molecular weight distributions were generally higher
for the polymers produced by 2, some control over
molecular weight was observed using various [M]/[Y]
ratios at fixed yield (entries 6-8). In addition, the
sampling of one reaction mixture at [M]/[Y] ) 1000
showed a roughly linear increase in molecular weight
with increasing yield (entries 9-11). While NMR analy-
sis14 indicated no stereoelectivity in the polymerizations
initiated by enantiopure 1 and 2, polymerization of pure
L-lactide using 2 as catalyst ([M]/[Y] ) 150; 24 h) gave
pure isotactic PLA. Thus, no epimerization of lactide or
PLA occurs, arguing against an anionic polymerization
mechanism and boding well for future extension of this
work aimed at developing stereoelective catalysts. Over-
all, from these initial investigations it is clear that 1
and 2 are active polymerization catalysts and that
modest changes in the ligand structure can have
significant effects on the polymerization activity.

Encouraged by the polymerization activity of 1 and
2, we prepared an additional variant, 3, with ligand
LMe2. An X-ray crystal structure of 3 (Figure 1) indicated
a dinuclear topology akin to those of 1 and 2, except
each Y(III) ion is 8-coordinate with a coordinated water
molecule that is H-bonded to an alkoxide oxygen [O(3)‚
‚‚O(4a) ) 2.571(2) Å]. In solution, 3 exhibited a sharp
1H NMR spectrum at -40 °C like the ambient temper-
ature spectra of 1 and 2, but the peaks broadened
reversibly upon warming, indicating fluxional behavior.
In addition to these solid state and solution structural
differences, PLA production using 3 was much faster
than the reactions promoted by complexes 1 and 2 at
identical catalyst loadings (compare entries 9, 11, and
14). The presence of coordinated water15 and/or the
highly fluxional solution behavior of 3 are possible
factors responsible for its high activity.

In conclusion, we have discovered a set of novel
yttrium complexes that display unprecedented coordi-
nation geometries for the ligands S-H3LMe, R-H3LiPr, and
H3LMe. These complexes are promising catalysts for the
ring-opening polymerization of lactide. The demonstra-
tion of readily manipulated ligand effects on polymer-
ization reactivity in these discrete, well-characterized
complexes represents an important step in the develop-
ment of highly selective lanthanide catalysts for the
controlled synthesis of PLA and other polyesters.
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